Statistics for Business and Economics

Tenth Edition, Global Edition

Chapter 11 Simple Regression

Section 11.1 Overview of Linear Models

- An equation can be fit to show the best linear relationship between two variables:

$$
Y=\beta_{0}+\beta_{1} X
$$

Where
Y is the dependent variable and
X is the independent variable
β_{0} is the Y-intercept
β_{1} is the slope

Least Squares Regression

- Estimates for coefficients β_{0} and β_{1} are found using a Least Squares Regression technique
- The least-squares regression line, based on sample data, is

$$
\hat{y}=b_{0}+b_{1} x
$$

- Where b_{1} is the slope of the line and b_{0} is the y-intercept:

$$
b_{1}=\frac{\operatorname{Cov}(x, y)}{s_{x}^{2}}=r\left(\frac{s_{y}}{s_{x}}\right) \quad b_{0}=\bar{y}-b_{1} \bar{x}
$$

Introduction to Regression Analysis

- Regression analysis is used to:
- Predict the value of a dependent variable based on the value of at least one independent variable
- Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to explain (also called the endogenous variable)

Independent variable: the variable used to explain the dependent variable (also called the exogenous variable)

Section 11.2 Linear Regression Model

- The relationship between X and Y is described by a linear function
- Changes in Y are assumed to be influenced by changes in X
- Linear regression population equation model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}
$$

- Where β_{0} and β_{1} are the population model coefficients and ε is a random error term.

Simple Linear Regression Model (1 of 2)

The population regression model:

Linear Regression Assumptions

- The true relationship form is linear (Y is a linear function of X, plus random error)
- The error terms, ε_{i} are independent of the x values
- The error terms are random variables with mean 0 and constant variance, σ^{2} (the uniform variance property is called homoscedasticity)

$$
E\left[\varepsilon_{i}\right]=0 \text { and } E\left[\varepsilon_{i}^{2}\right]=\sigma^{2} \text { for }(i=1, \ldots, n)
$$

- The random error terms ε_{i}, are not correlated with one another, so that

$$
E\left[\varepsilon_{i} \varepsilon_{j}\right]=0 \text { for all } i \neq j
$$

Simple Linear Regression Model (2 of 2)

Simple Linear Regression Equation

The simple linear regression equation provides an estimate of the population regression line

The individual random error terms e_{i} have a mean of zero

$$
e_{i}=\left(y_{i}-\hat{y}_{i}\right)=y_{i}-\left(b_{0}+b_{1} x_{i}\right)
$$

Section 11.3 Least Squares Coefficient Estimators (1 of 2)

- b_{0} and b_{1} are obtained by finding the values of b_{0} and b_{1} that minimize the sum of the squared residuals (errors), SSE:
$\min \mathrm{SSE}=\min \sum_{i=1}^{n} e_{i}^{2}$

$$
\begin{aligned}
& =\min \sum\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& =\min \sum\left[y_{i}-\left(b_{0}+b_{1} x_{i}\right)\right]^{2}
\end{aligned}
$$

Differential calculus is used to obtain the coefficient estimators b_{0} and b_{1} that minimize SSE

Least Squares Coefficient Estimators (2 of 2)

- The slope coefficient estimator is

$$
b_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\operatorname{Cov}(x, y)}{s_{x}^{2}}=r \frac{s_{y}}{s_{x}}
$$

- And the constant or y-intercept is

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
- Dependent variable (Y) = house price in $\$ 1000$ s
- Independent variable $(X)=$ square feet

Sample Data for House Price Model

House Price in $\$ 1000 s$ $(\boldsymbol{Y}$	Square Feet (\boldsymbol{X})
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Copyright © 2023 Pearson Education Ltd.

Graphical Presentation (1 of 2)

- House price model: scatter plot

Regression Using Excel (1 of 2)

- Excel will be used to generate the coefficients and measures of goodness of fit for regression
- Data / Data Analysis / Regression

Regression Using Excel (2 of 2)

- Data / Data Analysis / Regression

Provide desired input:

Excel Output (1 of 6)

Excel Output (2 of 6)

Regression Statistics

Pearson

Graphical Presentation (2 of 2)

- House price model: scatter plot and regression line

house price $=98.24833+0.10977$ (square feet)

Interpretation of the Intercept, b Sub 0

house price $=98.24833+0.10977$ (square feet)

- b_{0} is the estimated average value of Y when the value of X is zero (if $X=0$ is in the range of observed X values)
- Here, no houses had 0 square feet, so $b_{0}=98.24833$ just indicates that, for houses within the range of sizes observed, $\$ 98,248.33$ is the portion of the house price not explained by square feet

Interpretation of the Slope Coefficient, b Sub 1

house price $=98.24833+0.10977$ (square feet)

- b_{1} measures the estimated change in the average value of Y as a result of a one-unit change in X
- Here, $b_{1}=.10977$ tells us that the average value of a house increases by $.10977(\$ 1000)=\$ 109.77$, on average, for each additional one square foot of size

Section 11.4 Explanatory Power of a Linear Regression Equation

- Total variation is made up of two parts:

$$
\mathrm{SST}=\mathrm{SSR}+\mathrm{SSE}
$$

Total Sum of Squares

$\operatorname{SST}=\sum\left(y_{i}-\bar{y}\right)^{2} \quad \mathrm{SSR}=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2} \quad \mathrm{SSE}=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$
where:

$$
\begin{aligned}
& \bar{y}=\text { Average value of the dependent variable } \\
& y_{i}=\text { Observed values of the dependent variable } \\
& \hat{y}_{i}=\text { Predicted value of } y \text { for the given } x_{i} \text { value }
\end{aligned}
$$

Analysis of Variance (1 of 2)

- SST = total sum of squares
- Measures the variation of the y_{i} values around their mean, \bar{y}
- SSR = regression sum of squares
- Explained variation attributable to the linear relationship between x and y
- SSE = error sum of squares
- Variation attributable to factors other than the linear relationship between x and y

Analysis of Variance (2 of 2)

Coefficient of Determination, R Squared

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called R-squared and is denoted as R^{2}

$$
\begin{gathered}
R^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=\frac{\text { regression sum of squares }}{\text { total sum of squares }} \\
\text { note: } 0 \leq R^{2} \leq 1
\end{gathered}
$$

Examples of Approximate r Squared Values (1 of 3)

Y

$$
r^{2}=1
$$

Perfect linear relationship between X and Y :
100% of the variation in Y is explained by variation in X

Examples of Approximate r Squared Values (2 of 3)

$$
0<r^{2}<1
$$

Weaker linear relationships between X and Y :

Some but not all of the variation in Y is explained by variation in X

Examples of Approximate r Squared Values (3 of 3)

$$
r^{2}=0
$$

No linear relationship between X and Y :

The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

Excel Output (3 of 6)

	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Correlation and R Squared

- The coefficient of determination, R^{2}, for a simple regression is equal to the simple correlation squared

$$
R^{2}=r^{2}
$$

Estimation of Model Error Variance

- An estimator for the variance of the population model error is

$$
\hat{\sigma}^{2}=s_{e}^{2}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}=\frac{\mathrm{SSE}}{n-2}
$$

- Division by $n-2$ instead of $n-1$ is because the simple regression model uses two estimated parameters, b_{0} and b_{1}, instead of one

$$
s_{e}=\sqrt{s_{e}^{2}} \text { is called the standard error of the estimate }
$$

Excel Output (4 of 6)

| ANOVA | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | $d f$ | | SS | $M S$ | Significance F |
| Regression | 1 | 18934.9348 | 18934.9348 | 11.0848 | 0.01039 |
| Residual | 8 | 13665.5652 | 1708.1957 | | |
| Total | 9 | 32600.5000 | | | |

	Coefficients	Standard Error	\boldsymbol{t} Stat	\boldsymbol{P}-value	Lower 95\%	Upper 95\%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Comparing Standard Errors

s_{e} is a measure of the variation of observed y values from the regression line

The magnitude of S_{e} should always be judged relative to the size of the y values in the sample data
i.e., $s_{e}=\$ 41.33 \mathrm{~K}$ is moderately small relative to house prices in the \$200-\$300K range

Section 11.5 Statistical Inference: Hypothesis Tests and Confidence Intervals

- The variance of the regression slope coefficient $\left(b_{1}\right)$ is estimated by

$$
s_{b_{1}}^{2}=\frac{s_{e}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{s_{e}^{2}}{(n-1) s_{x}^{2}}
$$

where:
$s_{b_{1}}=$ Estimate of the standard error of the least squares slope
$s_{e}=\sqrt{\frac{\mathrm{SSE}}{n-2}}=$ Standard error of the estimate

Excel Output (5 of 6)

Inference About the Slope: \boldsymbol{t} Test (1 of 2)

- t test for a population slope
- Is there a linear relationship between X and Y ?
- Null and alternative hypotheses

$$
\begin{array}{ll}
H_{0}: \beta_{1}=0 & \text { (no linear relationship) } \\
H_{1}: \beta_{1} \neq 0 & \text { (linear relationship does exist) }
\end{array}
$$

- Test statistic

$$
\begin{array}{ll}
t=\frac{b_{1}-\beta_{1}}{s_{b_{1}}} & \begin{array}{l}
\text { where: } \\
b_{1}=\text { regression slope coefficient } \\
\beta_{1}=\text { hypothesized slope }
\end{array} \\
\text { d.f. }=\mathrm{n}-2 & s_{b_{1}}=\text { standard error of the slope }
\end{array}
$$

Inference About the Slope: \boldsymbol{t} Test (2 of 2)

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation:

house price $=98.25+0.1098$ (sq.ft.)

The slope of this model is 0.1098
Does square footage of the house significantly affect its sales price?

Inferences About the Slope: t Test Example (1 of 3)

$H_{0}: \beta_{1}=0$
$H_{1}: \beta_{1} \neq 0$
From Excel output:

	Coefficients	Stapdard Error	t Stat	P-value
Intercept	98.24833	58.0334	1.69296	0.12892
Square Feet	0.10977		0.03297	3.32938

$$
t=\frac{b_{1}-\beta_{1}}{s_{b_{1}}}=\frac{0.10977-0}{0.03297}=3.32938
$$

Inferences About the Slope: t Test Example (2 of 3)

Test Statistic: $\boldsymbol{t}=\mathbf{3 . 3 2 9}$

From Exce	From Excel outpu			
$H_{1}: \beta_{1} \neq 0$	Coefficients Staplard E		${ }^{\text {tsta}}$	
Intercept				0.12892
$t_{\text {s, }, 053}=2.3060 \quad$ Square Fe				
	Decision: Reject H_{0}			
-2.3060000	that square footage affects			
Pearson copy	house price			

Inferences About the Slope: t Test Example (3 of 3)

P-value $=0.01039$
$H_{0}: \beta_{1}=0$ From Excel output:

$$
H_{1}: \beta_{1} \neq 0
$$

	Coefficients	Standard Error	t Stat	P-value
Intercept	98.24833	58.03348	1.69296	0.12892
Square Feet	0.10977	0.03297	3.32938	0.01039

This is a two-tail test, so the p-value is $P(t>3.329)+P(t<-3.329)$
$=0.01039$
(for 8 d.f.)

Pearson

Confidence Interval Estimate for the Slope (1 o f2)

Confidence Interval Estimate of the Slope:

$$
b_{1}-t_{n-2, \frac{\alpha}{2}} s_{b_{1}}<\beta_{1}<b_{1}+t_{n-2, \frac{\alpha}{2}} s_{b_{1}}
$$

$$
\text { d.f. }=n-2
$$

Excel Printout for House Prices:

	Coefficients	Standard Error	\boldsymbol{t} Stat	\boldsymbol{P}-value	Lower 95\%	Upper 95\%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

At 95% level of confidence, the confidence interval for the slope is $(0.0337,0.1858)$

Confidence Interval Estimate for the Slope (2 of 2)

	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Since the units of the house price variable is $\$ 1000$ s, we are 95% confident that the average impact on sales price is between $\$ 33.70$ and $\$ 185.80$ per square foot of house size

This 95\% confidence interval does not include 0 .
Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance

Hypothesis Test for Population Slope Using the F Distribution (1 of 2)

- F Test statistic:

$$
F=\frac{\mathrm{MSR}}{\mathrm{MSE}}
$$

where

$$
\begin{aligned}
\mathrm{MSR} & =\frac{\mathrm{SSR}}{k} \\
\mathrm{MSE} & =\frac{\mathrm{SSE}}{n-k-1}
\end{aligned}
$$

where F follows an F distribution with k numerator and $(n-k-1)$ denominator degrees of freedom
($k=$ the number of independent variables in the regression model)

Hypothesis Test for Population Slope Using the F Distribution (2 of 2)

- An alternate test for the hypothesis that the slope is zero:

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

- Use the F statistic

$$
F=\frac{\mathrm{MSR}}{\mathrm{MSE}}=\frac{\mathrm{SSR}}{s_{e}^{2}}
$$

- The decision rule is

$$
\text { reject } H_{0} \text { if } F \geq F_{1, n-2, \alpha}
$$

Excel Output (6 of 6)

Regression Statistics

	Coefficients	Standard Error	\boldsymbol{t} Stat	\boldsymbol{P}-value	Lower 95\%	Upper 95\%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

F-Test for Significance

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0 \\
& \alpha=.05 \\
& d f_{1}=1 \quad d f_{2}=8
\end{aligned}
$$

Test Statistic:

$F=\frac{\mathrm{MSR}}{\mathrm{MSE}}=11.08$
Decision:
Reject H_{0} at $\alpha=0.05$

Conclusion:

There is sufficient evidence that house size affects selling price

Section 11.6 Prediction

- The regression equation can be used to predict a value for y, given a particular x
- For a specified value, x_{n+1}, the predicted value is

$$
\hat{y}_{n+1}=b_{0}+b_{1} x_{n+1}
$$

Predictions Using Regression Analysis

Predict the price for a house with 2000 square feet:

$$
\begin{aligned}
\text { house price } & =98.25+0.1098 \text { (sq.ft.) } \\
& =98.25+0.1098(2000) \\
& =317.85
\end{aligned}
$$

The predicted price for a house with 2000 square feet is $317.85(\$ 1,000 \mathrm{~s})=\$ 317,850$

Relevant Data Range

- When using a regression model for prediction, only predict within the relevant range of data

Estimating Mean Values and Predicting Individual Values

Goal: Form intervals around y to express uncertainty about the value of y for a given x_{i}

Confidence Interval for the Average Y, Given X

Confidence interval estimate for the expected value of \boldsymbol{y} given a particular x_{i}
Confidence interval for $E\left(Y_{n+1} \mid X_{n+1}\right)$:

$$
\hat{y}_{n+1} \pm t_{n-2, \frac{\alpha}{2}} s_{e} \sqrt{\left[\frac{1}{n}+\frac{\left(x_{n+1}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]}
$$

Notice that the formula involves the term $\left(x_{n+1}-\bar{x}\right)^{2}$
so the size of interval varies according to the distance x_{n+1} is from the mean, \bar{x}

Prediction Interval for an Individual Y, Given X

Confidence interval estimate for an actual observed value of \boldsymbol{y} given a particular x_{i}
Confidence interval for \hat{y}_{n+1} :

Example: Confidence Interval for the Average \boldsymbol{Y}, Given $\boldsymbol{X}_{\text {(1 of } 2)}$

Confidence Interval Estimate for $E\left(Y_{n+1} \mid X_{n+1}\right)$
Find the 95% confidence interval for the mean price of 2,000 square-foot houses
Predicted Price $\hat{y}_{i}=317.85$ ($\$ 1,000 \mathrm{~s}$)

$$
\hat{y}_{n+1} \pm t_{n-2, \frac{\alpha}{2}} s_{e} \sqrt{\frac{1}{n}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}}=317.85 \pm 37.12
$$

The confidence interval endpoints are 280.73 and 354.97 , or from $\$ 280,730$ to $\$ 354,970$

Example: Confidence Interval for the Average \boldsymbol{Y}, Given $\boldsymbol{X}_{\text {(2 of } 2)}$

Confidence Interval Estimate for \hat{y}_{n+1}
Find the 95% confidence interval for an individual house with 2,000 square feet
Predicted Price $\hat{y}_{i}=317.85(\$ 1,000 \mathrm{~s})$

$$
\hat{y}_{n+1} \pm t_{n-1, \frac{\alpha}{2}} s_{e} \sqrt{1+\frac{1}{n}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}}=317.85 \pm 102.28
$$

The confidence interval endpoints are 215.57 and 420.13, or from $\$ 215,570$ to $\$ 420,130$

Statistics for Business and Economics

Tenth Edition, Global Edition

Chapter 12 Multiple Regression

Section 12.1 The Multiple Regression Model

Idea: Examine the linear relationship between
1 dependent $(Y) \& 2$ or more independent variables $\left(X_{i}\right)$

Multiple Regression Model with K Independent Variables:

Multiple Regression Equation

The coefficients of the multiple regression model are estimated using sample data

Multiple regression equation with K independent variables:

In this chapter we will always use a computer to obtain the regression slope coefficients and other regression summary measures.

Pearson

Three Dimensional Graphing (1 of 2)

Two variable model

Three Dimensional Graphing (2 of 2)

Two variable model

Section 12.2 Estimation of Coefficients

Standard Multiple Regression Assumptions

- 1. The $x_{j i}$ terms are fixed numbers, or they are realizations of random variables X_{j} that are independent of the error terms, ε_{i}
- 2. The expected value of the random variable Y is a linear function of the independent X_{j} variables.
-3. The error terms are normally distributed random variables with mean 0 and a constant variance, σ^{2}.

$$
E\left[\varepsilon_{i}\right]=0 \quad \text { and } E\left[\varepsilon_{i}^{2}\right]=\sigma^{2} \quad \text { for }(i=1, \ldots, n)
$$

(The constant variance property is called homoscedasticity)

Standard Multiple Regression Assumptions

- 4. The random error terms, ε_{i}, are not correlated with one another, so that

$$
E\left[\varepsilon_{i} \varepsilon_{j}\right]=0 \text { for all } i \neq j
$$

- 5. It is not possible to find a set of numbers,
$c_{0}, c_{1}, \ldots, c_{k}$, such that

$$
c_{0}+c_{1} x_{1 i}+c_{2} x_{2 i}+\ldots+c_{K} x_{K i}=0
$$

(This is the property of no linear relation for the $X_{j} s$)

Example 1: 2 Independent Variables

- A distributor of frozen desert pies wants to evaluate factors thought to influence demand
- Dependent variable: Pie sales (units per week)
- Independent variables: $\left\{\begin{array}{l}\text { Price (in \$) } \\ \text { Advertising (\$100's) }\end{array}\right.$
- Data are collected for 15 weeks

Pie Sales Example

Week	Pie Sales	Price $\mathbf{(\$)}$	Advertising $\mathbf{(\$ 1 0 0 s)}$
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

Multiple regression equation:

$$
\begin{aligned}
\text { Sales }= & \left.b_{0}+b_{1} \text { (Price }\right) \\
& +b_{2}(\text { Advertising })
\end{aligned}
$$

Estimating a Multiple Linear Regression Equation

- Excel can be used to generate the coefficients and measures of goodness of fit for multiple regression
- Data / Data Analysis / Regression

Multiple Regression Output

The Multiple Regression Equation

| $\widehat{\text { Sales }}=306.526-24.975($ Price $)+74.131$ (Advertising) |
| :--- | :--- | :--- |
| where |
| Sales is in number of pies per week |
| Price is in $\$$ |
| Advertising is in \$100's. |

$\mathbf{b}_{1}=-24.975:$ sales will decrease, on average, by 24.975 pies per week for each \$1 increase in selling price, net of the effects of changes due to advertising	$\mathbf{b}_{2}=74.131$: sales will increase, on average, by 74.131 pies per week for each \$100 increase in advertising, net of the effects of changes due to price

Section 12.3 Explanatory Power of a Multiple Regression Equation

Coefficient of Determination, \boldsymbol{R}^{2}

- Reports the proportion of total variation in y explained by all x variables taken together

$$
R^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=\frac{\text { regression sum of squares }}{\text { total sum of squares }}
$$

- This is the ratio of the explained variability to total sample variability

Coefficient of Determination, R Squared

Regression Statistics		$R^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=\frac{29460.0}{56493.3}=.52148$					
Multiple R							
R Square	0.52148						
Adjusted R Square	0.44172	52.1\% of the variation in pie sales is explained by the variation in price and advertising					
Standard Error	47.46341						
Observations	15						
ANOVA	df	$s s$	MS	F	Significance F		
Regression	2	29460.027	14730.013	6.53861	0.01201		
Residual	12	27033.306	2252.776				
Total	14	56493.333					
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%	
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404	
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392	
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888	

Estimation of Error Variance

- Consider the population regression model

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{K} x_{K i}+\varepsilon_{i}
$$

- The unbiased estimate of the variance of the errors is

$$
s_{e}^{2}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-K-1}=\frac{\mathrm{SSE}}{n-K-1}
$$

where $e_{i}=y_{i}-\hat{y}_{i}$

- The square root of the variance, s_{e}, is called the standard error of the estimate

Standard Error, s Sub Epsilon

Regression Statistics		$s_{e}=47.463$				
Multiple R R Square Adjusted R Square Standard Error Observations	$\begin{array}{r} \hline 0.72213 \\ 0.52148 \\ 0.44172 \\ 47.46341 \end{array}$	The magnitude of this value can be compared to the average y value				
ANOVA	df	SS	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Pearson

Adjusted Coefficient of Determination, \boldsymbol{R} Bar Squared (1 of 2)

- R^{2} never decreases when a new X variable is added to the model, even if the new variable is not an important predictor variable
- This can be a disadvantage when comparing models
-What is the net effect of adding a new variable?
- We lose a degree of freedom when a new X variable is added
- Did the new X variable add enough explanatory power to offset the loss of one degree of freedom?

Adjusted Coefficient of Determination, \boldsymbol{R} Bar Squared (2 of 2)

- Used to correct for the fact that adding non-relevant independent variables will still reduce the error sum of squares

$$
\bar{R}^{2}=1-\frac{\operatorname{SSE} /(n-K-1)}{\operatorname{SST} /(n-1)}
$$

(where $n=$ sample size, $K=$ number of independent variables)

- Adjusted R^{2} provides a better comparison between multiple regression models with different numbers of independent variables
- Penalize excessive use of unimportant independent variables
- Value is less than R^{2}

R Bar Squared

Regression Statistics		$\bar{R}^{2}=.44172$							
Multiple R	0.72213								
R Square	0.52148	44.2% of the variation in pie sales is explained by the variation in price and advertising, taking into account the sample size and number of independent variables							
Adjusted R Square	0.44172								
Standard Error	47.46341								
Observations	15								
ANOVA	df	SS	MS				F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201				
Residual	12	27033.306	2252.776						
Total	14	56493.333							
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%			
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404			
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392			
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888			

Section 12.4 Conf. Intervals and Hypothesis Tests for Regression Coefficients

The variance of a coefficient estimate is affected by:

- the sample size
- the spread of the X variables
- the correlations between the independent variables, and
- the model error term

We are typically more interested in the regression coefficients b_{j} than in the constant or intercept b_{0}

Confidence Intervals (1 of 2)

Confidence interval limits for the population slope β_{j}

$$
b_{j} \pm t_{n-K-1, \frac{\alpha}{2}} S_{b_{j}}
$$

$$
\text { where } t \text { has }(n-K-1) \text { d.f. }
$$

	Coefficients	Standard Error
Intercept	306.52619	114.25389
Price	-24.97509	10.83213
Advertising	74.13096	25.96732

Here, t has
$(15-2-1)=12$ d.f.

Example: Form a 95\% confidence interval for the effect of changes in price $\left(x_{1}\right)$ on pie sales:

$$
-24.975 \pm(2.1788)(10.832)
$$

So the interval is $-48.576<\beta_{1}<-1.374$

Confidence Intervals (2 of 2)

Confidence interval for the population slope β_{i}

	Coefficients	Standard Error	...	Lower 95\%	Upper 95\%
Intercept	306.52619	114.25389	...	57.58835	555.46404
Price-24.97509	10.83213		-48.57626	-1.37392
Advertising	74.13096	25.96732	\ldots	17.55303	130.70888

Example: Excel output also reports these interval endpoints:
Weekly sales are estimated to be reduced by between 1.37 to 48.58 pies for each increase of $\$ 1$ in the selling price

Hypothesis Tests

- Use t-tests for individual coefficients
- Shows if a specific independent variable is conditionally important
- Hypotheses:
$-H_{0}: \beta_{j}=0$ (no linear relationship)
$-H_{1}: \beta_{j} \neq 0$ (linear relationship does exist between x_{j} and y)

Evaluating Individual Regression Coefficients (1 of 3)

$$
H_{0}: \beta_{j}=0 \text { (no linear relationship) }
$$

$H_{1}: \beta_{j} \neq 0$ (linear relationship does exist between x_{i} and y)

Test Statistic:

$$
t=\frac{b_{j}-0}{S_{b_{j}}} \quad(\mathrm{df}=n-k-1)
$$

Evaluating Individual Regression Coefficients (2 of 3)

Regression Statistics		t-value for Price is $t=-2.306$, with p value . 0398 t-value for Advertising is $t=2.855$, with p-value . 0145				
Multiple R R Square Adjusted R Square Standard Error Observations	0.72213					
	0.52148					
	0.44172					
	47.46341					
	15					
		\uparrow				
ANOVA	df	ss	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
Coefficients		Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Example 2: Evaluating Individual Regression Coefficients

$$
H_{0}: \beta_{j}=0 \quad \text { From Excel output: }
$$

$$
\begin{aligned}
& H_{1}: \beta_{j} \neq 0 \\
& \text { d.f. }=\mathbf{1 5}-\mathbf{2 - 1}=\mathbf{1 2} \\
& \alpha=.05 \\
& t_{12, .025}=\mathbf{2 . 1 7 8 8}
\end{aligned}
$$

	Coefficients	Standard Error	t Stat
Price	-24.97509	10.83213	-2.30565
Advertising	74.13096	25.96732	0.85478

The test statistic for each variable falls in the rejection region (p-values < .05)
 Decision:
Reject H_{0} for each variable Conclusion:
There is evidence that both Price and Advertising affect pie sales at $\alpha=.05$

Section 12.5 Tests on Regression Coefficients

Tests on All Coefficients

- F-Test for Overall Significance of the Model
- Shows if there is a linear relationship between all of the X variables considered together and Y
- Use F test statistic
- Hypotheses:
$H_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{K}=0$ (no linear relationship)
H_{1} : at least one $\beta_{i} \neq 0$ (at least one independent variable affects Y

F-Test for Overall Significance (1 of 3)

- Test statistic:

$$
F=\frac{\mathrm{MSR}}{s_{e}^{2}}=\frac{\mathrm{SSR} / K}{\mathrm{SSE} /(n-K-1)}
$$

where F has K (numerator) and

$$
(n-K-1) \text { (denominator) }
$$

degrees of freedom

- The decision rule is

Reject H_{0} if $F=\frac{\text { MSR }}{s_{e}^{2}}>F_{K, n-K-1, \alpha}$

F-Test for Overall Significance (2 of 3)

Regression Statistics		$F=\frac{\mathrm{MSR}}{\mathrm{MSE}}=\frac{14730.0}{2252.8}=6.5386$				
Multiple R R Square Adjusted R Square Standard Error Observations	0.72213 0.52148 0.44172 47.46341					
		With 2 and 12 degrees of freedom		P-value for the F-Test		
ANOVA	df	SS	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

F-Test for Overall Significance (3 of 3)

$$
H_{0}: \beta_{1}=\beta_{2}=0
$$

$H_{1}: \beta_{1}$ and β_{2} not both zero

$$
\begin{aligned}
\alpha & =.05 \\
\mathrm{df}_{1} & =2 \quad \mathrm{df}_{2}=12
\end{aligned}
$$

Critical

Test Statistic:

$$
\begin{aligned}
& F=\frac{\mathrm{MSR}}{\mathrm{MSE}}=6.5386 \\
& \text { Decision: }
\end{aligned}
$$

Since F test statistic is in the rejection region (p-value $<.05$), reject H_{0}

Conclusion:

There is evidence that at least one independent variable affects Y

Test on a Subset of Regression Coefficients ${ }_{(1 \text { of } 2)}$

- Consider a multiple regression model involving variables X_{j} and Z_{j}, and the null hypothesis that the Z variable coefficients are all zero:

$$
\begin{gathered}
y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{K} x_{K}+\alpha_{1} z_{1}+\cdots \alpha_{R} z_{R}+\varepsilon \\
H_{0}: \alpha_{1}=\alpha_{2}=\cdots=\alpha_{R}=0 \\
H_{1}: \text { at least one of } \alpha_{j} \neq 0(j=1, \ldots, R)
\end{gathered}
$$

Test on a Subset of Regression Coefficients (2 of 2)

- Goal: compare the error sum of squares for the complete model with the error sum of squares for the restricted model
- First run a regression for the complete model and obtain SSE
- Next run a restricted regression that excludes the Z variables (the number of variables excluded is R) and obtain the restricted error sum of squares $\operatorname{SSE}(R)$
- Compute the F statistic and apply the decision rule for a significance level α

$$
\text { Reject } H_{0} \text { if } F=\frac{(\operatorname{SSE}(\mathrm{R})-\mathrm{SSE}) / \mathrm{R}}{s_{e}^{2}}>F_{R, n-K-R-1, \alpha}
$$

Section 12.6 Prediction

- Given a population regression model

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{K} x_{K i}+\varepsilon_{i}(i=1,2, \ldots, n)
$$

- then given a new observation of a data point

$$
\left(x_{1, n+1}, x_{2, n+1}, \ldots, x_{K, n+1}\right)
$$

the best linear unbiased forecast of \hat{y}_{n+1} is

$$
\hat{y}_{n+1}=b_{0}+b_{1} x_{1, n+1}+b_{2} x_{2, n+1}+\cdots+b_{K} x_{K, n+1}
$$

- It is risky to forecast for new X values outside the range of the data used to estimate the model coefficients, because we do not have data to support that the linear model extends beyond the observed range.

Predictions from a Multiple Regression Model

Predict sales for a week in which the selling price is $\$ 5.50$ and advertising is \$350:
$\widehat{\text { Sales }}=306.526-24.975($ Price $)+74.131$ (Advertising)
$=306.526-24.975(5.50)+74.131(3.5)$
$=428.62$

Predicted sales is 428.62 pies

Note that Advertising is in \$100's, so \$350 means that $X_{2}=3.5$

Section 12.7 Transformations for Nonlinear Regression Models

- The relationship between the dependent variable and an independent variable may not be linear
- Can review the scatter diagram to check for nonlinear relationships
- Example: Quadratic model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{1}^{2}+\varepsilon
$$

- The second independent variable is the square of the first variable

Quadratic Model Transformations

Quadratic model form:
Let $z_{1}=x_{1}$ and $z_{2}=x_{1}^{2}$
And specify the model as

$$
y_{i}=\beta_{0}+\beta_{1} z_{1 i}+\beta_{2} z_{2 i}+\varepsilon_{i}
$$

- where:
$\beta_{0}=Y$ intercept
$\beta_{1}=$ regression coefficient for linear effect of X on Y
$\beta_{2}=$ regression coefficient for quadratic effect on Y
$\varepsilon_{i}=$ random error in Y for observation i

Linear vs. Nonlinear Fit

Quadratic Regression Model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{1 i}^{2}+\varepsilon_{i}
$$

Quadratic models may be considered when the scatter diagram takes on one of the following shapes:

$$
\begin{aligned}
& \beta_{1}=\text { the coefficient of the linear term } \\
& \beta_{2}=\text { the coefficient of the squared term }
\end{aligned}
$$

Testing for Significance: Quadratic Effect (1 of 3)

- Testing the Quadratic Effect
- Compare the linear regression estimate

$$
\hat{y}=b_{0}+b_{1} x_{1}
$$

- with quadratic regression estimate

$$
\hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{1}^{2}
$$

- Hypotheses
- $H_{0}: \beta_{2}=0$ (The quadratic term does not improve the model)
- $H_{1}: \beta_{2} \neq 0$ (The quadratic term improves the model)

Testing for Significance: Quadratic Effect (2 of 3)

- Testing the Quadratic Effect

Hypotheses

$-H_{0}: \beta_{2}=0$ (The quadratic term does not improve the model)
$-H_{1}: \beta_{2} \neq 0$ (The quadratic term improves the model)

- The test statistic is

$$
\begin{aligned}
& t=\frac{b_{2}-\beta_{2}}{S_{b_{2}}} \\
& \text { d.f }=n-3
\end{aligned}
$$

where:

$$
\left.\begin{array}{rl}
b_{2}= & \text { squared term slope } \\
& \text { coefficient }
\end{array}\right\} \begin{aligned}
\beta_{2}= & \text { hypothesized slope (zero) } \\
S_{b_{2}}= & \text { standard error of the slope }
\end{aligned}
$$

Testing for Significance: Quadratic Effect (3 of 3)

- Testing the Quadratic Effect

Compare R^{2} from simple regression to \bar{R}^{2} from the quadratic model

- If \bar{R}^{2} from the quadratic model is larger than R^{2} from the simple model, then the quadratic model is a better model

Example 3: Quadratic Model (1 of 3)

Purity	Filter Time
3	1
7	2
8	3
15	5
22	7
33	8
40	10
54	12
67	13
70	14
78	15
85	15
87	16
99	17

- Purity increases as filter time increases:

Example 3: Quadratic Model (2 оз 3)

- Simple regression results:
$\hat{y}=-11.283+5.985$ Time

	Coefficients	Standard Error	\boldsymbol{t} Stat	\boldsymbol{P}-value
Intercept	-11.28267	3.46805	-3.25332	0.00691
Time	5.98520	0.30966	19.32819	$2.078 \mathrm{E}-10$

Regression Statistics		F	Significance F
R Square	0.96888		373.57904
Adjusted R Square	0.96628		
Standard Error	6.15997		

Example 3: Quadratic Model (3 of 3)

- Quadratic regression results:

$$
\hat{y}=1.539+1.565 \text { Time }+0.245(\text { Time })^{2}
$$

	Coefficients	Standard Error	t Stat	P-value
Intercept	1.53870	2.24465	0.68550	0.50722
Time	1.56496	0.60179	2.60052	0.02467
Time-squared	0.24516	0.03258	$\mathbf{7 . 5 2 4 0 6}$	$1.165 \mathrm{E}-05$

Regression Statistics		F	Significance F
R Square	0.99494	1080.7330	$2.368 \mathrm{E}-13$
Adjusted R Square	0.99402		
Standard Error	2.59513		

The quadratic term is significant and improves the model: R^{2} is higher and s_{e} is lower, residuals are now random

Pearson

Logarithmic Transformations

The Exponential Model:

- Original exponential model

$$
Y=\beta_{0} X_{1}^{\beta_{1}} X_{2}^{\beta_{2}} \varepsilon
$$

- Transformed logarithmic model

$$
\log (Y)=\log \left(\beta_{0}\right)+\beta_{1} \log \left(X_{1}\right)+\beta_{2} \log \left(X_{2}\right)+\log (\varepsilon)
$$

Interpretation of coefficients

For the logarithmic model:

$$
\log Y_{i}=\log \beta_{0}+\beta_{1} \log X_{1 i}+\log \varepsilon_{i}
$$

- When both dependent and independent variables are logged:
- The estimated coefficient b_{k} of the independent variable X_{k} can be interpreted as
a 1 percent change in X_{k} leads to an estimated b_{k} percentage change in the average value of Y
- b_{k} is the elasticity of Y with respect to a change in X_{k}

Section 12.8 Dummy Variables for Regression Models

- A dummy variable is a categorical independent variable with two levels:
- yes or no, on or off, male or female
- recorded as 0 or 1
- Regression intercepts are different if the variable is significant
- Assumes equal slopes for other variables
- If more than two levels, the number of dummy variables needed is (number of levels - 1)

Dummy Variable Example (1 of 2)

$$
\hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{2}
$$

Let:

$y=$ Pie Sales
$x_{1}=$ Price
$x_{2}=$ Holiday ($x_{2}=1$ if a holiday occurred during the week) ($x_{2}=0$ if there was no holiday that week)

Dummy Variable Example (2 of 2)

$$
\begin{aligned}
& \hat{y}=b_{0}+b_{1} x_{1}+b_{2}(1)= \\
& \hat{y}=b_{0}+b_{1} x_{1}+b_{2}(0)=\underbrace{(\begin{array}{c}
\left.b_{0}+b_{2}\right)
\end{array}+\underbrace{b_{1} x_{1} x_{1}}_{\begin{array}{c}
\text { Same } \\
\text { slope }
\end{array}} \text { No Holiday }}_{\begin{array}{c}
\text { Different } \\
\text { intercept } \\
b_{0}
\end{array}} \text { Holiday } \\
& \text { ales) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } H_{0}: \beta_{2}=0 \text { is } \\
& \text { rejected, then } \\
& \text { "Holiday" has a } \\
& \text { significant effect } \\
& \text { on pie sales }
\end{aligned}
$$

Interpreting the Dummy Variable Coefficient

Example: Sales $=300-30$ (Price) +15 (Holiday)

Sales: number of pies sold per week Price: pie price in \$

Holiday: $:\{1$ If a holiday occurred during the week
Holiday: $\left\{\begin{array}{l}1 \text { If no holiday occurred }\end{array}\right.$
$b_{2}=15$: on average, sales were 15 pies greater in weeks with a holiday than in weeks without a holiday, given the same price

Differences in Slope

- Hypothesizes interaction between pairs of x variables
- Response to one x variable may vary at different levels of another x variable
- Contains two-way cross product terms

$$
\begin{aligned}
-\hat{y} & \left.=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{2}\right) \\
& =b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3}\left(x_{1} x_{2}\right)
\end{aligned}
$$

Effect of Interaction

- Given:

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{2} X_{2}+\left(\beta_{1}+\beta_{3} X_{2}\right) X_{1} \\
& =\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}
\end{aligned}
$$

- Without interaction term, effect of X_{1} on Y is measured by β_{1}
- With interaction term, effect of X_{1} on Y is measured by $\beta_{1}+\beta_{3} X_{2}$
- Effect changes as X_{2} changes

Interaction Example

Suppose x_{2} is a dummy variable and the estimated regression equation is $\hat{y}=1+2 x_{1}+3 x_{2}+4 x_{1} x_{2}$

Slopes are different if the effect of x_{1} on y depends on x_{2} value

Significance of Interaction Term

- The coefficient b_{3} is an estimate of the difference in the coefficient of x_{1} when $x_{2}=1$ compared to when $x_{2}=0$
- The t statistic for b_{3} can be used to test the hypothesis

$$
\begin{aligned}
& H_{0}: \beta_{3}=0 \mid \beta_{1} \neq 0, \beta_{2} \neq 0 \\
& H_{1}: \beta_{3} \neq 0 \mid \beta_{1} \neq 0, \beta_{2} \neq 0
\end{aligned}
$$

- If we reject the null hypothesis we conclude that there is a difference in the slope coefficient for the two subgroups

Section 12.9 Multiple Regression Analysis Application Procedure

Errors (residuals) from the regression model:

$$
e_{i}=\left(y_{i}-\hat{y}_{i}\right)
$$

Assumptions:

- The errors are normally distributed
- Errors have a constant variance
- The model errors are independent

Analysis of Residuals

- These residual plots are used in multiple regression:
- Residuals vs. \hat{y}_{i}
- Residuals vs. $x_{1 i}$
- Residuals vs. $x_{2 i}$
- Residuals vs. time (if time series data)

Use the residual plots to check for violations of regression assumptions

